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1. Introduction

Warped extra dimensions occupy an important place in particle physics today. The origi-

nal motivation of Randall and Sundrum was to address the hierarchy problem by lowering

the cut-off scale in the Higgs sector [1]. After several improvements, of which the most

important are placing the gauge and fermion fields in the bulk [2] and extending the

Standard Model (SM) gauge symmetry so as to include the custodial symmetry [3], the

Randall-Sundrum (RS) set-up remains a valid framework for studying electroweak sym-

metry breaking. Yet the most exciting aspect of RS is that, according to the AdS/CFT

correspondence [4], it provides a rough description of a purely 4D system where funda-

mental fields interact with a large N strongly-coupled, approximately conformal sector

(CFT) [5]. In particular, RS with a Higgs boson localized on the IR brane is a dual real-

ization of the old idea of a composite Higgs boson arising as a bound state of some new

strong interactions. Moreover, a 4D composite pseudo-Goldstone boson [6] can be modeled
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in RS by the so-called gauge-higgs scenario [7], where the Higgs boson is identified with

the fifth component of a 5D gauge boson [8]. Confidence in this 4D/5D correspondence is

strengthened by the success of the related AdS/QCD approach in modeling the low-energy

meson sector of QCD [9, 10].

The warped 5th dimension of RS is an interval terminated by the UV brane and the IR

brane. From the holographic point of view, the fields living on the UV brane are interpreted

as the fundamental sector probing the CFT, while the IR brane describes the low-energy

dynamics of the CFT that spontaneously breaks the conformal symmetry and, often, other

global symmetries. The hard-wall IR brane is an idealization that translates to breaking the

symmetries by a vev of an operator of infinite scaling dimension. It is interesting to investi-

gate a more general set-up where the IR breaking is modeled by a smooth evolution of the

background geometry and/or bulk fields vevs. Such framework is referred to as the soft wall.

Soft walls have a relatively short and not so intense history. The possible reason is that

the soft-wall backgrounds are more complicated than RS whose metric is simply a slice of

AdS. The studies so far have been restricted to AdS/QCD, with the motivation of con-

structing a more faithful dual description of the QCD dynamics. The interest was spawned

by the observation in ref. [11] that a carefully designed soft-wall background leads to a linear

Kaluza-Klein (KK) spectrum: m2
n ∼ n, rather than m2

n ∼ n2 as encountered in the hard-

wall RS. The linear spectrum of excited vector mesons in QCD is both expected by theoret-

ical arguments and observed experimentally. Refs. [12, 13] discussed more extensively how

features of the soft-wall background map onto the properties of QCD. A dynamical system

that leads to the background with linear KK trajectories has been proposed in ref. [14].

In this paper we investigate the soft wall in the context of electroweak symmetry break-

ing.1 The most obvious possibility would be to use a bulk scalar to break the electroweak

symmetry [16]. A working model can be constructed along the same lines as in AdS/QCD

with SU(2)L × SU(2)R gauge group broken to SU(2)V by a bulk Higgs field in the bi-

fundamental representation. Then the “pions” that result from this symmetry breaking

pattern play the role of the electroweak would-be-Goldstones eaten by the W and Z bosons.

The difference with respect to AdS/QCD is that the SU(2)L ×U(1)Y subgroup of the bulk

gauge group should remain unbroken on the UV brane and that an additional U(1) gauge

factor has to be included in the bulk to correctly accommodate the hypercharge. Such

a 5D set-up would be dual to a composite Higgs arising from a technicolor-like strongly

coupled dynamics. In this paper we jump immediately to a higher level where the Higgs

is realized as a pseudo-Goldstone boson, that is to the 5D gauge-higgs scenario. This has

the attractive feature that the Higgs is proteced by approximate global symmetries and

therefore it can naturally be light.

The generalization of the gauge-higgs models to the soft-wall case is not so straight-

forward, as there is no IR brane to break the bulk gauge symmetries. Instead, we have to

introduce a charged bulk scalar field with a potential that forces it to obtain a vev. The

consequence is that the SM higgs boson lives not only in the fifth component of the broken

gauge bosons, but also in the Goldstone bosons hosted by the bulk scalar. That implies

1See also ref. [15] for a study of a particular string-motivated class of IR smooth geometries.
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that the radiatively generated Higgs mass can be UV sensitive because the scalar mass

term is not protected by the symmetries at the UV brane. We will show however that

the UV sensitivity can be avoided if the bulk condensate is localized in IR and decays fast

enough in the vicinity of the UV brane.

The hope is that the soft-wall version of RS provides a more adequate description of

the dual composite Higgs models. It also offers more possibilities for the KK spectrum and

the couplings which is important in the context of LHC search strategies. One important

result we demonstrate in this paper is that the constraints on the KK scale from electroweak

precision tests turn out to be somewhat milder. Even small differences in allowed KK

masses are extremely relevant from the phenomenological point of view, since they may

greatly increase the prospects for a discovery at the LHC. We construct an explicit soft-wall

example where the typical constraint on the lightest KK mode mass is reduced down to

2 TeV, rather than 3TeV typically found in hard-wall models. Our another, more exotic

example with a continuous KK spectrum separated from the SM particles by a mass gap

is even less constrained and admits the continuum below 1 TeV.

In section 2 we discuss general features of the soft wall scenario. We systematize various

possibilities for the KK spectrum. We also derive important properties of the solution to

the equations of motion. This section is a bit loaded with math but the results are very

relevant for phenomenological applications. Next, we move to the soft-wall version of the

gauge-higgs scenario. In section 3 we discuss a toy model based on the U(1) gauge symmetry

in the bulk. This simple set-up allows us to understand the physics of the gauge-higgs and

identify all degrees of freedom that arise in the soft wall set-up. KK scalars and pseudoscalar

always appear on a soft wall (while they are optional in the hard wall version), and we

devote some time to discussing their equations of motions. Section 4 is the heart of this

paper. We consider a soft-wall version of the 5D gauge-higgs model based on SO(5) gauge

symmetry, which is an example of a fully realistic and calculable model of the electroweak

sector. We discuss the spectrum of the gauge bosons and evaluate the gauge contribution

to the radiative Higgs potential. We comment how the softness of the loop corrections in

the usual hard-wall scenario can be maintained in the soft-wall version. Then we derive

the low-energy action and general expressions for the electroweak precision parameters.

In section 5 we examine the electroweak sector in two particular soft-wall backgrounds.

One has a discrete resonance spectrum, which however shows a different spacing between

KK modes, as compared to the hard wall models. The other has a continuous spectrum

above a mass gap, which could never be obtained with a hard wall. We analyze contraints

from electroweak precision data in both scenarios and point out that they are less severe

than in typical RS scenarios. We conclude in section 6. Finally, an appendix contains the

derivation of the effective action that we use to calculate the oblique parameters.

2. Soft-wall background

We consider a 5D gauge theory propagating in a warped background with the line element

ds2 = a2(z)(dx2
µ − dz2). (2.1)
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The metric in eq. (2.1) may refer to the true background metric that solves the 5D Einstein

equation, or it may be an effective background that incorporates a vev of some dilaton field

multiplying the gauge action: aeff(z) = eΦ(z)atrue(z) . In this paper we are not concerned

with the dynamics that could produce a particular warp factor. In other words, we study

5D gauge theories in a fixed, non-dynamical background. This way we sweep under the

carpet such important questions as radion stabilization, backreaction of condensates on the

geometry, etc. A proper discussion of these issues could easily obscure our main point which

is the low energy phenomenology. Therefore, we adopt a pragmatic approach and concen-

trate on the effect of general backgrounds on the observables in the electroweak sector. See

refs. [12 – 14] for discussion of possible dynamical origins of the soft-wall background.

The conformal coordinate z runs from z0 (the UV brane) to infinity. We fix a(z0) = 1.

The strong-coupling cuf-off scale on the UV brane is then set by ∼ 4π/z0. Even though

there is no IR brane, the KK spectrum develops a mass gap if the warp factor decays

exponentially or faster in IR. If this is the case, the proper length of the extra dimension,

L =
∫∞

z0
a(z), is also finite. Note that the finite proper length implies that in the coordinates

ds2 = a2(y)dx2 − dy2 the 5th coordinate spans a finite interval y ∈ [0, L]. The difference

with the usual RS scenario would be the vanishing of the warp factor on the ”IR brane”.

The warp factor is not specified in most of the following discussion, and we only make

a couple of technical assumptions. One is that a(z) is monotonically decreasing (a′ < 0)

for all z; the other is that it decays sufficiently fast at large z, so as to generate a mass

gap. We also tacitly assume that the metric approaches AdS close to the UV brane, but

our results apply to more general cases as well.

A gauge field propagating in the background of eq. (2.1) has a quadratic action of

the form

S5 =

∫

d4x dz a(z)

(

−1

4
F 2

MN +
1

2
M2(z)A2

M

)

. (2.2)

The mass term should be understood as resulting from a condensation of a charged scalar

field and, in general, it can have a non-trivial dependence on the z coordinate. This implies

the conditionM2(z) ≥ 0 for all z. The equation of motion that follows from the 5D action is

(

a−1∂z(a∂z) −M2 + p2
)

f = 0. (2.3)

We are interested in the normalizable solution of this equation, in the sense
∫∞

z0
af2 <∞,

and we denote such a solution by KM (z, p) (when a normalizable solution does not exist,

as in AdS, we define KM as the solution that exponentially decays for large Euclidean

momenta). In the soft-wall set-up, normalizability plays the same role as IR boundary

conditions in RS, selecting one of the two independent solutions of eq. (2.3). Then the UV

boundary conditions leads to a quantization condition for p2, which fixes the KK spectrum.

In the following of this section, we discuss general properties of the solutions to eq. (2.3).

The formal results that we obtain here will later prove valuable to study physical observ-

ables in realistic models.

To proceed, it is convenient to borrow some methods and terminology from quantum

mechanics. The equation of motion can be recast into the form resembling the Schrödinger

– 4 –



J
H
E
P
1
2
(
2
0
0
8
)
1
0
7

equation by defining the ”wave function” Ψ as f = a−1/2Ψ. Note that the normalization

condition translates to square-integrability:
∫

Ψ2 <∞. The wave function satisfies

(

−∂2
z + VM (z)

)

Ψ = p2Ψ , VM (z) = M2 +
a′′

2a
− (a′)2

4a2
. (2.4)

From the shape of the potential one can quickly infer that the existence of the mass

gap relies on the corresponding Schrödinger potential VM being confining. The necessary

condition reads VM ≥ const > 0 for z → ∞. Moreover, in order to have a minimum of the

potential we also need VM to grow toward UV. This last condition is always fulfilled by

metrics that are asymptotically AdS in UV, in which case VM ∼ 1/z2 at small z.

Furthermore, it is profitable to introduce the so-called superpotential W (z) [17], that

is related to the Schrödinger potential by the Riccati equation

W 2 −W ′ = VM . (2.5)

One can prove that the asymptotic condition VM ≥ const > 0 is equivalent to W ≥ const >

0. This is obvious when W 2 dominates over W ′. On the other hand, it is not possible to

keep W ′ > W 2 asymptotically: sooner or later W 2 will catch up, bringing us back to the

previous case.

Embedding the SM electroweak sector in a 5D gauge theory will require that some of

the bulk gauge symmetries remain unbroken, which translates to M2 = 0 in the equation

of motion for the corresponding generator. Therefore, we are interested in the backgrounds

that have a mass gap in the limit M2 → 0, that is V0 must be confining (which implies

that VM is confining too, as long as M2 is positive). For M2 = 0 the superpotential is

W0 = − a′

2a > 0. This shows that the KK spectrum in the unbroken phase has a mass gap

if the warp factor decays in IR at least as fast as e−zα

with α ≥ 1 [13]. Depending on the

power α, three general situations can arise:

1. Unparticles, W0(z)|z→∞ → 0. The spectrum consists of a continuum of non-normalizable

modes and there is no mass gap [18]. The familiar example is that with the AdS met-

ric a(z) = z0/z corresponding toW0 = 1/2z, which is nothing but the RS2 set-up [19].

This direction is not explored in this paper.

2. Hidden Valley, W0(z)|z→∞ → ρ > 0. The spectrum again has a continuum of non-

normalizable modes separated from the (optional) massless mode by a mass gap

ρ [20]. An example presented recently in ref. [21] has a(z) = e−2ρz/z corresponding

to W0(z) = 1/2z + ρ.

3. Resonances, W0(z)|z→∞ → ∞. This is the most familiar scenario. The spectrum

consists of a discrete tower of vector resonances separated by a mass gap from (op-

tional) zero modes. An important example based on the proposal of ref. [11] has the

metric a(z) = e−ρ2z2

/z corresponding to W0(z) = 1/2z + ρ2z.

One can also envisage hybrid scenarios where unbroken gauge boson are of the unparticle or

the hidden-valley type, while broken gauge bosons have a discrete spectrum due to M2(z)

asymptotically growing in IR.
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We first study the normalizable solution to the equation of motion (2.3) in the special

case p2 = 0:
[

a−1∂z(a∂z) −M2(z)
]

η = 0. (2.6)

We will see in the next section that η(z) ≡ KM (z, 0) is directly related to the gauge-higgs

profile in the 5th dimension. Obviously, for M2 = 0, the normalizable solution is just

η = 1. In the following we concentrate on the case M2 > 0. To get more insight into the

shape of η we split the superpotential as W = W0 + UM where W0 = −a′/2a, and UM is

related to M2 by the non-linear equation

U2
M − U ′

M − a′

a
UM = M2. (2.7)

We also fix UM (z0) > 0. Eq. (2.6) can now be written as

a−1 (∂z − UM ) a (∂z + UM ) η(z) = 0. (2.8)

The normalizable solution is η(z) = e−
R

z UM . Normalizability follows from the fact that

aη2 = e−
R

z W (recall that limz→∞W > 0 is the mass gap condition).

We will prove now that η(z) is monotonically decreasing all the way from the UV

brane down to IR. The derivative is ∂zη = −UM (z)e−
R

z UM (z′). Since UM (z0) > 0, the

gauge-higgs profile decreases in the vicinity of the UV brane. This trend could be reversed

if η had an extremum, which would imply that UM vanishes somewhere, UM (z∗) = 0. Note

however that UM must always decrease in the vicinity of z∗ since, from the equation (2.7),

−U ′
M (z∗) = M2(z∗) > 0. Thus, UM could have at most one zero, if UM started positive at

z0 and became negative asymptotically. That is however incompatible with the asymptotic

limz→∞W (z) > 0. Indeed, suppose W > 0 which implies W0 > |UM |. From eq. (2.7),

0 < M2 = |UM |2 − 2W0|UM | − U ′
M < −W0|UM | − U ′

M . (2.9)

This requires that U ′
M be negative (UM is decreasing) and that |U ′

M | > W0|UM |. Thus

∂z log |UM | > W0: the logarithm of UM has to be steep enough such that it is larger than

W0. But then it is impossible to keep |UM | < W0 all the way down to IR. We conclude

that, as long as there is a mass gap, UM can never become negative and that η(z) is always

decreasing. This is an important result that will later turn out to be equivalent to positivity

of the S parameter.

We move to discussing the solutions of the equations of motion for general p2. We

will obtain the power expansion of the normalizable solution for small p2 and for large

Euclidean p2. The former can be achieved by separating KM (z, p) = η(z)K̄M (z, p), where

K̄M satisfies the equation

(

a−1
M ∂z(aM∂z) + p2

)

K̄M (z, p) = 0, (2.10)

with the effective warp factor defined as

aM (z) =
η2(z)

η2(z0)
a(z) = e

−2
R

z

z0
W (z′)

. (2.11)
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Since W (z) > 0 and asymptotically W (z) > const, the effective metric aM (z) is monoton-

ically decreasing and at least exponentially decaying in the IR, much as the original warp

factor a(z). We can integrate eq. (2.10) perturbatively in p2, which leads to the following

expansion of KM :

KM (z, p) = η(z)

[

1 + p2

∫ z

z0

a−1
M

∫ ∞

z′
aM + p4

∫ z

z0

a−1
M

∫ ∞

z′
aM

∫ z′′

z0

a−1
M

∫ ∞

z′′′
aM + O(p6)

]

.

(2.12)

In general, this expansion is valid for momenta below the mass gap. In order to obtain an

expansion for large Euclidean momenta we rewrite

KM (z, ip) = a−1/2e−pzφ(z), (2.13)

where φ satisfies the equation

[

e2pz∂z(e
−2pz∂z) − VM (z)

]

φ = 0. (2.14)

Again, we integrate perturbatively, this time expanding in powers of VM , which yields

KM (z, ip) = a−1/2(z)e−pz

[

1 −
∫ z

z0

e2pz′
∫ ∞

z′
e−2pz′′VM (z′′) + O(V 2

M )

]

. (2.15)

In general, this expansion is valid for pz0 ≫ 1, that is for momenta above the UV brane

scale. When the warp factor is approximately AdS near the UV brane, the potential

contains a 1/z2 term. Then the integrals in eq. (2.15) lead to log z enhanced terms for

pz0 < 1 which undermines the perturbative expansion.

This ends the math section. We are holding all the threads to tackle physics questions.

3. Toy model

We start with a simple toy model based on the U(1) gauge group. The gauge symmetry

is broken both by UV boundary conditions and by a vev of a charged bulk scalar field.

The spectrum includes a massless Goldstone boson - the gauge-higgs - that is a mixture of

the 5th component of the gauge field and the phase of the bulk scalar. The toy model is

interesting from the pedagogical point of view even though the gauge group is not realistic

and there is no dynamics associated with the vev of the gauge-higgs. The point is that the

lagrangian is simple enough to identify easily all the degrees of freedom. In particular, the

condition for the existence of the gauge-higgs and its equations of motion can be simply

derived.

The 5D lagrangian is

L =
√
g

{

−1

4
XMNXMN +

1

2
|DMΦ|2 − V (|Φ|)

}

,

XMN = ∂MXN − ∂NXM ,

DMΦ = ∂MΦ − ig5XMΦ. (3.1)
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We parametrize the scalar as

Φ(x, z) = [Λ(z) + φ(x, z)] eig5G(x,z). (3.2)

where Λ(z) is a z-dependent vev that is a solution to the scalar equations of motion. The

lagrangian becomes

L = − a

4
XµνXµν +

a

2
(∂zXµ − ∂µXz)

2

+
a3

2
(∂µφ)2 +

a3

2
g2
5(Λ + φ)2 (∂µG−Xµ)2

− a3

2
(∂zΛ + ∂zφ)2 − a3

2
g2
5(Λ + φ)2 (∂zG−Xz)

2

− a5V (Λ + φ). (3.3)

One can see here that a vev of Xz has no physical significance. Indeed, such a vev must be

accompanied by a vev of G, with 〈Xz〉 = ∂z〈G〉. In the presence of these vevs we can shift,

Xz → 〈Xz〉 +Xz = ∂z〈G〉 +Xz , G→ 〈G〉 +G, (3.4)

so that they disappear from the lagrangian. In fact, they are a pure-gauge configuration.

The linear terms in φ vanish due to the equations of motion for Λ(z). The quadratic

terms are

L = − a

4
XµνXµν +

a

2
(∂zXµ − ∂µXz)

2

+
a3

2
(∂µφ)2 +

a

2
M2(z) (Xµ − ∂µG)2

− a3

2
(∂zφ)2 − a

2
M2(z) (∂zG−Xz)

2

− 1

2
a5V ′′(Λ)φ2. (3.5)

where M2(z) = g2
5a

2Λ2. From the above we can see that the 4D effective theory contains

the following degrees of freedom

• U(1) gauge fields Xµ,n living in Xµ.

• Scalars and pseudoscalars living in G and Xz that mix with one another:

– physical pseudo-scalars Pn,

– Goldstones Gn eaten by the massive gauge fields,

– depending on the boundary condition for Xµ, physical massless scalar h referred

to as the gauge-higgs.

• Scalar fields φn living in φ.

Let us discuss them in turn.

– 8 –
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3.1 Gauge boson

The 5D gauge field can be expanded into the KK modes as,

Xµ(x, z) = Xµ,n(x)fX,n(z),

a−1∂z(a∂zfX,n) −M2(z)fX,n +m2
nfX,n = 0,

afX,n∂zfX,n|z=z0
= 0,

∫ ∞

z0

afX,nfX,m = δnm. (3.6)

The UV boundary conditions for fX,n can be either Neumann or Dirichlet. Here we choose

the Dirichlet one, fX,n|z=z0
= 0, because it will allow the gauge-higgs to exist.

The equation of motion for the gauge field profile fX,n(z) has two independent solu-

tions. In section 2 we defined KM (z, p) as the normalizable solution,
∫∞

z0
aK2

M <∞. Using

this notation, the gauge profile can be written as

fX,n = αX,nKM (z,mn), (3.7)

and the KK masses are found by solving for the UV boundary condition

KM (z0,mn) = 0. (3.8)

3.2 Gauge-Higgs

The 5D fields G and Xz may contain a massless scalar mode - the gauge-higgs - that is

embedded as

Xz(x, z) → h(x)∂zη(z) G(x, z) → h(x)η(z). (3.9)

This particular embedding ensures that h does not pick up a mass term from the (∂zG−Xz)
2

in the lagrangian (3.3). Furthermore, the mixing term between the gauge-higgs and the

vector field reads

L = Xµ∂µh
(

∂z(a∂zη) − aM2η − (a∂zη)|∞z0

)

. (3.10)

The UV boundary term vanishes because the gauge field vanishes on the UV brane, while

the IR boundary term vanishes for normalizable solutions. The gauge-higgs does not mix

with the tower of the gauge fields if its profile satisfies the equation

a−1∂z(a∂zη) −M2(z)η = 0. (3.11)

This is the same as the gauge equation of motion with mn = 0, and the solutions were

discussed in section 2 below eq. (2.6). Furthermore, the gauge-higgs profile satisfies the

normalization condition

1 =

∫ ∞

z0

a
(

(∂zη)
2 +M2(z)η2

)

, (3.12)

which, upon integration by part and using the equation of motion can be written as

a(z)η(z)∂zη(z)|∞z0
= 1. (3.13)
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The first term must vanish for a normalizable solution. Consequently, the normalized

profile can be written as

η(z) =
1

√

UM (z0)
e
−

R

z

z0
UM (z′)

, (3.14)

where UM is the mass superpotential introduced in eq. (2.7). Recall that we proved that

UM (z) > 0 in a theory with a mass gap and M2 > 0, which implies that the gauge-higgs

profile is monotonically decreasing.

Although η(z) completely characterizes the gauge Higgs profile, it has no immediate

physical meaning. Instead, the localization of the gauge-higgs in the gauge field component

is determined by (∂zη)
2, whereas the localization in the scalar component is governed by

M2(z)η2.

3.3 Other scalars and pseudoscalars

We continue the discussion of the scalar spectrum with the scalar φ, which corresponds to

oscillations around the bulk condensate Λ(z). φ does not mix withG or Xz so that it has the

simple KK expansion φ(x, z) = φn(x)fφ,n(z). The profile must solve the equation of motion

[

a−3∂z(a
3∂z) + p2 − a2V ′′(Λ)

]

f. (3.15)

Moreover, diagonalization of the KK action requires vanishing of the boundary term

a3fφ,n∂zfφ,n|∞z0
= 0, (3.16)

which leaves us two options: Dirichlet or Neumann boundary conditions on the UV brane

(we could obtain mixed boundary conditions if we added UV boundary mass or kinetic

terms). The normalization condition reads
∫∞

z0
a3f2

φ,n = 1.

The scalar equation of motion is different from that for the gauge field, but simi-

lar methods apply. We pick up the normalizable solution:
∫∞

a3f2 < ∞, and denote

it as K̄(z, p). The spectrum is found by imposing the UV boundary condition, e.g.

∂zK̄(z0,mn) = 0. Then we can write the profile as fφ,n = ᾱnK̄(z,mn). We can also rewrite

the scalar equation of motion as a Schrödinger-type equation by defining f̄ = a−3/2Ψ̄. This

leads to the equation (−∂2
z + V̄ )Ψ̄ = p2Ψ̄ with V̄ (z) = a2V ′′(Λ) + 3a′′

2a − 3(a′)2

4a2 . The last

two terms are, up to the factor of 3, analogous to the ones in the Schrödinger version of

the gauge equation of motion. As long as the ”mass term” a2V ′′ is positive or vanishing in

IR, the sufficient condition for the scalar spectrum to devolop a mass gap is the same as

for the gauge fields: the warp factor should decay as e−ρz or faster in IR.

For the pseudoscalars living in Xz and G, the KK expansion and the equations of

motion are more involved. We start with the general KK expansion:

Xz(x, z) = h(x)∂zη(z) +Gn(x)fX,n(z) + Pn(x)f̃X,n,

G(x, z) = h(x)η(z) +Gn(x)fG,n(z) + Pn(x)f̃G,n. (3.17)

The gauge-higgs profile η was discussed before. The Goldstones Gn should marry the corre-

sponding gauge fields Xµ,n, such that the quadratic lagrangian depends on the combination
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mnXµ,n − ∂µGn. To achieve this, the Goldstone profiles must be synchronized with those

of the gauge fields

fX,n = m−1
n ∂zfX,n , fG,n = m−1

n fX,n. (3.18)

Much as the gauge-higgs, the Goldstones cancel out in the (∂zG −Xz)
2 term in eq. (3.5),

so that they do not pick up any mass terms.

The rule for the pseudo-scalar profiles is instead that they should not mix with the

gauge fields. The mixing terms following from eq. (3.5) are

−Xµ,m∂µPn

(

a∂zfX,mf̃X,n + aM2fX,mf̃G,n

)

. (3.19)

So, we need

f̃G,n =
∂z(af̃X,n)

aM2
, afX,mf̃X,n| = 0. (3.20)

Given the above, the kinetic terms and the mass terms are

1

2
∂µPn∂µPmf̃X,ma

[

f̃X,n − ∂z

(

∂z(af̃X,n)

aM2

)

+
∂z(af̃X,n)

M2
|
]

, (3.21)

−1

2
PnPmaM

2

[

f̃X,n − ∂z

(

∂z(af̃X,n)

aM2

)][

f̃X,m − ∂z

(

∂z(af̃X,m)

aM2

)]

. (3.22)

To diagonalize the kinetic terms we need the orthogonality relation

∫ ∞

z0

af̃X,m

[

f̃X,n − ∂z

(

∂z(af̃X,n)

aM2

)]

= δnm (3.23)

and the boundary conditions

M−2f̃X,n∂z(af̃X,n)| = 0, (3.24)

which leave two options for the UV boundary conditions. The mass terms are diagonalized

and the orthogonality relations are fulfilled if the profile f̃X,n is a solution of the equation

[

M2(z)∂z
1

aM2(z)
∂za+ p2 −M2(z)

]

f̃ = 0. (3.25)

We apply the same methods all over again. We pick up the normalizable solution:
∫∞

af̃2 <

∞, and denote it as K̃M (z, p). The spectrum is found by imposing the UV boundary

condition, e.g. K̃M (z0,mn) = 0. Then we can write the profile as f̃X,n = α̃nK̃M (z,mn).

We can also rewrite the pseudoscalar equation by defining f̃ = a−1/2Mψ̃ which leads to

the Schrödinger equation with Ṽ = M2 + a1/2M∂2
z (a−1/2M−1). For a non-pathological

behavior of M2 in IR, the exponential decay of the warp factor in IR ensures the presence

of a mass gap in the pseudoscalar spectrum.
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4. Soft-wall model of electroweak breaking

In this section we discuss a model that accommodates the SM electroweak gauge bosons

and the Higgs sector. Many features of the toy model in section 3 carry over to the realistic

setting. In particular, the profile of the gauge-higgs is unchanged. The main complication

is that the vev of the gauge-higgs affects the mass spectrum and the KK decomposition.

The simplest model that includes the electroweak group and custodial symmetry is

based on SO(5) gauge symmetry [22]. We consider here the SO(5) × U(1)X gauge theory,

where SO(5) is broken down to SO(4) by a vev of a real bulk scalar transforming as 50.

The UV boundary conditions break SO(5) × U(1)X down to SU(2)L × U(1)Y , where the

electroweak group is a subgroup of SO(4) × U(1)X left unbroken by the bulk scalar vev.

The lagrangian is given by

L =
√
g

{

−1

4
TrAMNAMN +

1

2
DMΦTDMΦ − V (Φ)

}

,

AMN = ∂MAN − ∂NAM − ig5[AM , AN ], AM = Aα
mT

α,

DMΦ = ∂MΦ − ig5AMΦ. (4.1)

The SO(5)×U(1)X generators are normalized as TrTαT β = δαβ . We split these generators

into four classes: T a
L and T a

R, a = 1 . . . 3 that generate the SO(4) ≡ SU(2)L × SU(2)R
subgroup of SO(5), T â

C , â = 1 . . . 4 that generate the SO(5)/SO(4) coset, and TX ≡ I for

U(1)X . The SO(5) × U(1)X gauge field can be analogously split into La
M , Ra

M , C â
M , XM .

The bulk scalar is parametrized as

Φ(x, z) = [Λ(z) + φ(x, z)] eig5Gâ(x,z)T â

C

(

~0

1

)

= [Λ + φ]







Ga

G sin(g5G/
√

2)
G4

G sin(g5G/
√

2)

cos(g5G/
√

2)






, (4.2)

whereG2 = GâGâ. The vev Λ(z) breaks SO(5) to SO(4) and gives the massM2 = a2Λ2g2
5/2

to the coset gauge bosons C â
M .

For the time being, we do not specify the UV boundary conditions for the bulk scalar:

they can be Dirichlet, or Neumann, or mixed. Since the gauge-higgs live partly in the bulk

scalar, one may want to impose the Dirichlet boundary condition Φ(z0) = 0. This would

protect us from UV brane localized SO(5) violating mass terms for Φ that would imply

mass terms for our gauge-higgs.2 For our purpose, however, it is sufficient if the scalar

vev is peaked in IR while it is Planck suppressed on the UV brane. This will ensure that

the gauge-higgs component in Φ(z0) is small enough so that the hierarchy problem is not

reintroduced.

We fix the vev of the fifth component of the gauge field to be along the SO(5) generator

T 4
C . Much like in the toy model, there is a physical scalar mode embedded in C4

z and G4:

Xz(x, z) → h(x)∂zη(z), G(x, z) → h(x)η(z). (4.3)

2Thanks to Csaba Csaki for pointing this out.
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where η(z) is the gauge-higgs profile discussed at length in section 3.2. We identify this

scalar mode with the SM higgs boson. We assume that it acquires a vev 〈h(x)〉 = ṽ. In

principle, this vev is not a free parameter but it is fixed by the parameters of the 5D model,

as it is obtained by minimizing the radiative Coleman-Weinberg potential for h. Typically,

the largest contribution to the potential comes from the loops of the top quark and its KK

modes, and the vev depends mostly on the parameters in the top sector. In this paper

we do not study the fermionic sector nor the one-loop dynamics, postponing the complete

discussion to future publications.

4.1 Vector spectrum

Unlike in the toy model, the gauge-higgs vev affects the spectrum of the theory, in partic-

ular, it gives masses to some of the zero mode gauge bosons. The quadratic lagrangian for

the gauge fields in the gauge-higgs background reads

L = −a
4
TrAµνAµν − a

2
TrDzAµDzAµ

+
a3

2
M2(C4

µ)2 +
a3

2
M2

(

Ca
µ cosz +

1√
2
(La

µ −Ra
µ) sinz

)2

. (4.4)

DzL
a
µ = ∂zL

a
µ − g5ṽ

2
Ca

µ∂zη,

DzR
a
µ = ∂zR

a
µ +

g5ṽ

2
Ca

µ∂zη,

DzC
a
µ = ∂zC

a
µ +

g5ṽ

2
(La

µ −Ra
µ)∂zη,

DzC
4
µ = ∂zC

4
µ, DzXµ = ∂zXµ,

sinz ≡ sin(g5ṽη(z)/
√

2). (4.5)

One can see that ṽ mixes La
µ, Ra

µ, Ca
µ with each other. Thus, the mass eigenstates in the

presence of the vev will be embedded in all these fields (and also in Xµ, which mixes with

the others via UV boundary conditions). Therefore, we write the KK expansion as

La
µ(x, z) = Aµ,n(x)fa

L,n(z),

Ra
µ(x, z) = Aµ,n(x)fa

R,n(z),

C â
µ(x, z) = Aµ,n(x)f â

C,n(z),

Xµ(x, z) = Aµ,n(x)fX,n(z). (4.6)

The profiles satisfy the UV boundary conditions, that reduce SO(5) × U(1)X down to

SU(2)L × U(1)Y :

∂zf
a
L(z0) = 0, f i

R(z0) = 0, f â
C(z0) = 0, (4.7)

cxf
3
R(z0) − sxfX(z0) = 0, sx∂zf

3
R(z0) + cx∂zfX(z0) = 0, (4.8)

where sx = gX/
√

g2
X + g2

5 , cx = g5/
√

g2
X + g2

5 . We can identify s2x = g2
Y /g

2
L. The kinetic

terms fix the normalization condition:

1 =

∫ ∞

z0

dza(z)
∑

A=L,R,C,X

(fA(z))2. (4.9)
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The equations of motion are complicated because the various SO(5) gauge bosons are

mixed by the vev of the gauge-higgs. The usual trick employed in the gauge-higgs models

is to simplify the equations of motions by an appropriate rotation in the group space. In

the present case, the rotation is given by

fa
L =

1 + cosz

2
f̂a

L +
1 − cosz

2
f̂a

R +
sinz√

2
f̂a

C ,

fa
R =

1 − cosz

2
f̂a

L +
1 + cosz

2
f̂a

R − sinz√
2
f̂a

C ,

fa
C = −sinz√

2
f̂a

L +
sinz√

2
f̂a

R + cosz f̂
a
C ,

f4
C = f̂4

C , fX = f̂X . (4.10)

This transformation locally removes the gauge-higgs vev from the lagrangian (so that it

affects the spectrum only non-locally, via the boundary conditions). As a consequence, the

hatted profiles satisfy equations of motion that do not depend on ṽ,

(

a−1∂z(a∂z) +m2
n

)

f̂L,R,X = 0,
(

a−1∂z(a∂z) +m2
n −M2

)

f̂C = 0. (4.11)

Note that η(z) vanishes in the IR, thus f = f̂ asymptotically for z → ∞. Therefore, we

should pick the solution to the equations of motion (4.11) that decays in IR. We write

the hatted profiles f̂L,R,X = αL,R,XK0(z,mn), f̂C = αCKM (z,mn). From that, the true

profiles f can be obtained through eq. (4.10). The constants α are determined up to

normalization by the UV boundary conditions. It is clear that they depend on the gauge-

higgs vev only via sin(g5ṽη(z0)/
√

2). Writing it as sin(ṽ/fh) defines the global symmetry

breaking scale:

fh =

√
2

g5η(z0)
=

√

2UM (z0)

g5
. (4.12)

When sin(ṽ/fh) ≪ 1, the gauge-higgs becomes SM-like. The other extreme limit is

sin(ṽ/fh) = 1, in which the electroweak sector is Higgsless for all practical purposes (even

though a light scalar particle exists, it does not couple linearly to W and Z bosons, so it

cannot unitarize the longitudinal gauge boson scattering). In between these two extremes is

the pseudo-Goldstone Higgs, where the Higgs boson partly (up to E2/f2
h terms) unitarizes

the longitudinal scattering.

The UV boundary conditions relate the constants α and yield the quantization condi-

tion on the mass mn. There are several classes of solutions to the UV boundary conditions,

that define the towers of KK modes. Below we write down only those that contain a mass-

less mode in the limit of ṽ → 0. The lowest solutions of the quantization condition are

identified with the SM electroweak gauge bosons.

• Photon tower. This is a tower of neutral gauge bosons where the hatted profiles are
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given by

f̂3
L =

sx
√

1 + s2x
αγK0(z,m),

f̂3
R =

sx
√

1 + s2x
αγK0(z,m),

fX =
cx

√

1 + s2x
αγK0(z,m), (4.13)

while the remaining profiles all vanish. αγ is given by the normalization condition

(αγ)−2 =
∫∞

z0
a(z)K0(z,m)2. The spectrum of the photon and its KK modes is given

by the quantization condition

K ′
0(z0,m) = 0. (4.14)

m = 0 is always a solution to the above, and the corresponding mode is identified

with the SM photon. In that case K0(z, 0) = 1 and αγ = L−1/2.

• W tower. Another solution is a tower of charged gauge bosons. The profiles are

given by

f̂ i
L = αW

1 + cos(ṽ/fh)

2
K0(z,m),

f̂ i
R = αW

1 − cos(ṽ/fh)

2
K0(z,m),

f̂ i
C = αW

sin(ṽ/fh)√
2

K0(z0,m)

KM (z0,m)
KM (z,m). (4.15)

The quantization condition depends on ṽ,

K ′
0(z0,m)

K0(z0,m)
=

sin2(ṽ/fh)

2

(

−K
′
M(z0,m)

KM(z0,m)
+
K ′

0(z0,m)

K0(z0,m)

)

. (4.16)

In the limit ṽ → 0, there is a massless mode. In the presence of electroweak breaking

the lowest solution becomes mW ≈ gLfh

2 sin(ṽ/fh) and the corresponding mode is

identified with the SM W boson.

• Z tower. This is a tower of neutral gauge bosons where, unlike for the photon tower,

the masses depend on the gauge-higgs vev. The profiles are given by

f̂3
L = αZ

c2x + (1 + s2x) cos(ṽ/fh)

2(1 + s2x)1/2
K0(z,m),

f̂3
R = αZ

c2x − (1 + s2x) cos(ṽ/fh)

2(1 + s2x)1/2
K0(z,m),

f̂3
C = αZ

sin(ṽ/fh)√
2

(1 + s2x)
1/2 K0(z0,m)

KM (z0,m)
KM (z,m),

fX = −αZ
sxcx

(1 + s2x)1/2
K0(z,m). (4.17)

The quantization condition reads

K ′
0(z0,m)

K0(z0,m)
=

(1 + s2x) sin2(ṽ/fh)

2

(

−K
′
M (z0,m)

KM (z0,m)
+
K ′

0(z0,m)

K0(z0,m)

)

. (4.18)

The lowest lying solution is identified with the SM Z boson.
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There are other classes of solutions to the UV boundary conditions that do not lead to zero

modes, and where the mass spectrum is insensitive to the gauge-higgs vev. Furthermore,

similarly as in the toy model there are scalar, pseudo-scalar and unphysical Goldstone

particles. These are however not important for the following and we omit this discussion.

4.2 Gauge contributions to the Higgs mass

We turn to discussing the one-loop corrections to the Higgs mass generated by the elec-

troweak gauge bosons and its KK modes. Our gauge-Higgs is a (pseudo-) Goldstone boson

of SO(5) symmetry broken spontaneously down to SO(4) in the bulk, and explicitly down

to SU(2) on the UV brane. As a consequence of that, the Higgs potential vanishes at the

tree-level as long as there is no SO(5) breaking operator involving the scalar Φ localized

on the UV brane. A radiative Higgs potential is generated at one-loop level because the

tree-level KK mode masses depend on the vev ṽ. The simplest way to calculate it is to use

the spectral function ρ(p2) = det(−p2 +m2
n(ṽ)), which is a function of 4D momenta with

zeros encoding the whole KK spectrum in the presence of electroweak breaking [23]. With a

spectral function at hand, we can compute the Higgs potential from the Coleman-Weinberg

formula,

V (ṽ) =
N

(4π)2

∫ ∞

0
dp p3 log

(

ρ[−p2]
)

, (4.19)

where N = +3 for gauge bosons.

From the quantization conditions obtained in the previous section we know that the

spectral functions for W and Z towers have the form ρW,Z = 1 + FW,Z(p2) sin2(ṽ/fh). It is

convenient to define the form factor

ΠM (p2) = ∂z log (KM (z, p)) |z=z0
. (4.20)

From eq. (4.16) we identify

FW (p2) =
ΠM (p2) − Π0(p

2)

2Π0(p2)
(4.21)

and FZ(p2) = (1+s2x)FW (p2). FW determines the one-loop gauge contribution to the Higgs

mass parameter:

m2
H ≡ ∂2V

∂ṽ2
|ṽ=0 =

3(3 + s2x)

f2
h(4π)2

∫ ∞

0
dp p3FW (−p2) (4.22)

Quadratic divergences are avoided if the form factor FW decays faster than 1/p2 for large

Euclidean momenta. At this point our efforts from section 2 are beginning to pay off. At

small Euclidean momenta we can use eq. (2.12) to find that FW (−p2) ≈ g2
5f

2
h/4Lp

2. This

can be identified with the SM W and Z boson contribution to the Higgs mass. The presence

of the tower of KK modes changes the shape of FW (−p2) for momenta above the mass gap.

Whether the tower cuts off the quadratic divergences depends on the asymptotic form of

FW (−p2) for −p2 → ∞. Using eq. (2.15) we find that the leading asymptotic behavior of

the form factor is given by

FW (−p2) ≈
e2pz0

∫∞

z0
e−2pzM2(z)

2p+ a′/a+ . . .
. (4.23)
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The integral is exponentially suppressed in the IR, so that we can expand the mass term

around the UV brane as M2(z) = M2(z0) + (z − z0)∂zM
2(z0) + . . . and integrate term by

term. If M2(z0) 6= 0, the leading asymptotic behavior of the warp factor is

FW (−p2) ≈ M2(z0)

4p2
+ O(1/p3), pz0 ≫ 1. (4.24)

Thus the one-loop Higgs mass is in general quadratically divergent, δm2
H ∼

M2(z0)Λ
2/16π2f2

h ∼ M2(z0)/(z0fh)2, unlike in the standard hard-wall gauge-higgs sce-

nario. It is easy to understand why the quadratic divergence appears multiplied by M2(z0).

When M2(z0) 6= 0, the bulk scalar in which the Higgs is partly embedded can access the

UV brane. Since the UV brane does not respect SO(5), one is allowed to write a bare mass

term for the Higgs. In other words, the Higgs mass is not fully protected by symmetry

when M2(z0) 6= 0. We can avoid quadratic divergences if we set M2(z0) = 0, which is en-

sured when the bulk scalar satisfies Dirichlet boundary conditions on the UV brane. More

precisely, the mass is finite when we impose the condition that M2(z) vanishes faster than

(z − z0)
2 in the vicinity of the UV brane, while for M2(z) ∼ (z − z0)

2 the Higgs mass is

logarithmically sensitive to the cutoff. In practice, we do not need to insist on the finiteness

of the Higgs mass: it is enough if M2(z0) is sufficiently suppressed, M2(z0) <
∼ O(z2

0 TeV4).

This is true, for example, if M2(z) ∼ µ4z2 near the UV brane and the dimensionful coeffi-

cient µ is not larger than a TeV. We also note in passing that the UV behaviour of M2(z) is

related to the dimension of the operator breaking the SO(5) symmetry in the holographic

dual. The latter should be larger than 2 to avoid quadratic divergences.

4.3 Oblique corrections

Integrating out the heavy KK modes leaves the SM lagrangian plus higher-dimension op-

erators. We will assume here that all the light SM fermions are localized on the UV brane.

In such a case the corrections to the SM lagrangian are universal (except the operators

involving the third generation fermions), which means that there exists a field redefinition

such that the higher dimension operators involve only the electroweak gauge boson and

the Higgs field, whereas vertex correction and four-fermion operators are absent. Phe-

nomenologically, the most important are the corrections to the quadratic terms involving

the SU(2)L×U(1)Y gauge bosons (there are also corrections to the triple and quartic gauge

boson vertices, but these are less constrained by experiment). Restricting to the lagrangian

terms with at most four derivatives, these corrections can be described by seven ”oblique”

parameters [24]. We define them as follows:

Leff = − 1

4
(La

µν)2 − 1

4
(Bµν)2 +

g2
Lv

2

8
Li

µL
i
µ

+
v2

8

(

gLL
3
µ − gYBµ

)

(

1 − αT
g2
Y v

2

2
+ αU∂

2 + αV ∂
4

)

(

gLL
3
µ − gYBµ

)

− 1

4
αW (∂ρL

a
µν)2 − 1

4
αY (∂ρBµν)2 − gLgY v

2

8
L3

µν

(

αS + αX∂
2
)

Bµν + O(∂6). (4.25)

As explained in [24], the parameters αT,S,W,Y are most relevant for phenomenologists, since

they are the lowest order in their class (they also correspond to dimension six operators
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in the effective SM lagrangian). Furthermore, in our set-up αT = 0. This a consequence

of the original SO(5)/SO(4) coset structure, which implies that the quadratic terms in the

effective lagrangian respect the SU(2) custodial symmetry rotating the triplet La
µ. This

leaves us with three oblique parameters which we will find by matching with the low-

energy effective action obtained by integrating out the KK modes. The oblique parameters

of ref. [24] are related to the dimensionful coefficients α by Ŝ = m2
WαS , T̂ =

g2

Y
v2

2 αT ,

W = m2
WαW , Y = m2

WαY . The Peskin-Takeuchi S parameter is S = 4πv2αS .

The derivation of the low-energy effective action using the ”holographic approach” [25,

22, 26] is shifted to appendix A. It turns out that the quadratic part of the low-energy

effective action can be expressed in terms of the form factor defined in eq. (4.20),

Leff = − 1

2
Π0(p

2)
[

Z−1
L La

µL
a
µ + Z−1

B BµBµ

]

+ Z−1
L

sin2(ṽ/fh)

4

(

Π0(p
2) − ΠM (p2)

)

[

Li
µL

i
µ + (L3

µ − gY

gL
Bµ)2

]

(4.26)

where ZL,B are arbitrary normalization factors. In the limit of no EW breaking, ṽ = 0, the

gauge bosons should be massless, which is true when Π0(0) = 0. This is a consequence of

the 5D equations of motion, namely that the gauge invariance is left unbroken for M2 = 0.

Note also that, from eq. (4.12), the global symmetry breaking scale fh can be expressed by

the form factors as

f2
h = −2ΠM (0)

g2
5

= −2ΠM (0)

ZLg
2
L

. (4.27)

Expanding the form factors in powers of p2 we match the above lagrangian with

eq. (4.26). Canonical normalization is achieved when the normalization factors are

chosen as

ZL = Π′
0(0) +

sin2(ṽ/fh)

2

(

Π′
M (0) − Π′

0(0)
)

,

ZB = Π′
0(0)

Π′
0(0) + sin2(ṽ/fh)

2 (Π′
M (0) − Π′

0(0))

Π′
0(0) + sin2(ṽ/fh)

2 (1 − g2
Y /g

2
L)
(

Π′
M (0) − Π′

0(0)
)

. (4.28)

Then the W mass is given by m2
W = −Z−1

L ΠM (0) sin2(ṽ/fh)/2 which allows us to identify

the electroweak scale as

v2 = −2ΠM (0)

ZLg2
L

sin2(ṽ/fh) = f2
h sin2(ṽ/fh). (4.29)

The W and Z masses are positive if ΠM (0) < 0 which will turn out to be a general conse-

quence of the 5D equations of motion. We can see that v ≈ ṽ for sin(ṽ/fh) ≪ 1, while in the

technicolor limit, sin(ṽ/fh) = 1, we obtain v = fh. As we mentioned, v/fh is determined

by the radiatively generated Higgs potential, but we don’t discuss this issue in this paper.

Further expanding the form factors we read off the oblique parameters defined in

eq. (4.25):

αS =
Π′

M (0) − Π′
0(0)

ΠM (0)
, αW =

Π′′
0(0)

2ZL
, αY =

Π′′
0(0)

2ZB
. (4.30)
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If the solutions to the 5D equations of motion can be found then we can write down the

full form factor ΠM (p2) using eq. (4.20) and trivially compute the oblique parameters. In

those (more typical) instances when the explicit solution is not known we can still learn a

great deal by using the results from section 2. In particular, the small momentum p2 given

in eq. eq. (2.12) implies the following ”chiral expansion” of the form factors:

Π0(p
2) = p2L

(

1 + p2

∫∞

z0
a
∫ z
z0
a−1

∫∞

z′ a
∫∞

z0
a

)

+ O(p6), (4.31)

ΠM (p2) =
η′(z0)

η(z0)
+ p2

∫ ∞

z0

a(z)
η2(z)

η2(z0)
+ O(p4). (4.32)

Π0(0) = 0, as promised. The first derivative is set by the invariant length of the 5D,

Π′
0(0) =

∫∞

z0
a(z) = L, while the second derivative is also positive and is given by more

complicated functional of the warp factor. It follows that the oblique parameters W and Y

are always positive in the 5D set-up. In the limit sin(ṽ/f) → 0 they are equal and given by

αW = αY =

∫∞

z0
a
∫ z
z0
a−1

∫∞

z′ a
∫∞

z0
a

. (4.33)

ΠM (p2) depends on the SO(5) breaking bulk dynamics personified in the gauge-higgs

profile η(z). We have proved earlier that η(z) is monotonically decreasing everywhere in

the bulk, as there is a mass gap and M2 > 0 everywhere. In particular, ΠM (0) < 0, which

is what it takes to ensure m2
W > 0. Furthermore, the perturbative expression for ΠM (p2)

leads to the ”dispersive” representation of the S parameter

αS =

∫ ∞

z0

a(z)
(

η2(z0) − η2(z)
)

(4.34)

The decrease of η(z) implies that the S parameter in the 5D set-up is always positive.

The no-go theorem for negative S was proved in ref. [25] for Higgsless models with a RS

background, and then in ref. [27] in the context of 5D models with the SU(2)L × SU(2)R ×
U(1)X bulk gauge symmetry, for the Higgs field realized as an IR brane or a bulk scalar,

and for an arbitrary warped metric. Our analysis extends these results to the 5D soft

wall models of gauge-higgs unification, where the Higgs is a pseudo-Goldstone boson living

partly in a bulk scalar and partly in a fifth component of a gauge field. Eq.(4.34) and the

positivity of S hold for arbitrary v/fh, in particular, they hold in the Higgsless limit v = fh.

Therefore, the soft wall does not allow us to evade the no-go theorem for negative S.

5. Examples

5.1 Hard wall

As a reference point, we review the results for the standard hard wall RS set-up, where

the 5D coordinate is cut off at finite z = zL by the IR brane, and it is also the IR brane

rather than a bulk scalar that breaks SO(5) → SO(4). The hard wall can be viewed as

a special limit of the soft wall: the warp factor is discontinuous and vanishes for z ≥ zL,
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while the symmetry breaking mass M2 is zero everywhere except for z = zL where it is

infinite. Thus, our soft wall analysis applies to the hard wall as well after some obvious

adjustments. Namely, the solutions KM (z) and K0(z) should be chosen such as to satisfy

the appropriate IR boundary (rather than normalizability) conditions. Breaking of the

global symmetry by the IR brane amounts to setting KM (zL, p) = 0. For K0 we impose

the mixed boundary conditions a(zL)K ′
0(zL, p) = p2rK0(zL, p), where r is as an IR brane

kinetic term (common to SO(4) and U(1)X , for simplicity). These boundary conditions

imply that K’s can be expanded in powers of p2 as

K0(z, p) = C0

(

1 − p2

∫ zL

z
a−1

∫ zL

z′
a− p2r

∫ zL

z
a−1 + O(p4)

)

,

KM (z, p) = C0

(

∫ zL

z
a−1 + p2

∫ zL

z
a−1

∫ z′

z0

a

∫ zL

z′′
a−1 + O(p4)

)

. (5.1)

Everything else follows from that expansion, according to formulas presented in the previous

section. The form factors are

Π0(p
2) = p2(L+ r) + O(p4),

ΠM (p2) = − 1
∫ zL

z0
a−1

+ p2

∫ zL

z0
a−1

∫ z
z0
a
∫ zL

z′ a
−1

(

∫ zL

z0
a−1
)2 + O(p4). (5.2)

The expression for the global symmetry breaking scale follows:

f2
h =

2

g2
∗z0
∫ zL

z0
a−1

, (5.3)

where g2
∗ = g2

5/z0 is the dimensionless bulk gauge coupling. In the absence of UV brane

kinetic terms the weak coupling is related to g∗ via

g2
L = g2

∗

z0

L+ r − ǫ2

2

(

L+ r −
R

zL
z0

a−1
R

z

z0
a

R zL

z′
a−1

“

R

zL
z0

a−1

”

2

) , (5.4)

where ǫ = sin(ṽ/fh). The normalized Higgs profile is given by

η(z) =

∫ zL

z a−1

√

∫ zL

z0
a−1

. (5.5)

The S parameter becomes

S = 4πv2

[

(L+ r)(
∫ zL

z0
a−1)2 −

∫ zL

z0
a−1

∫ z
z0
a
∫ zL

z′ a
−1

∫ zL

z0
a−1

]

. (5.6)

For AdS the warp factor is a = z0/z. It follows that f2
h ≈ 4/g2

∗z
2
L. We obtain the S

parameter

S ≈ 3π

2
v2z2

L

(

1 +
4r

3zL

)

≈ ǫ2
6π

g2
∗

(

1 +
4r

3zL

)

, (5.7)
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in agreement with ref. [22]. The first equality shows that, for small IR brane term, the

S parameter is of order v2/M2
KK where MKK is the mass of the first KK mode: MKK ≈

2.4/zL. Imposing the constraint S < 0.2 leads to the bound on the KK mass MKK
>
∼ 3TeV.

Adding a positive IR brane kinetic term makes the bound even stronger. The second

equality shows that for a fixed ǫ = v/fh the size of the S parameter is determined by the

strength of the bulk gauge coupling. The latter is related to the weak gauge coupling as

in eq. (5.4) but we can control this relation by adjusting z0 or adding a UV gauge kinetic

term. Perturbativity of the 5D theory constrains g∗ such that NCFT ≡ 16π2/g2
∗ ≫ 1, which

then implies that ǫ has to be small enough. For example, for NCFT = 10 the bound is

ǫ < 0.4. This leads to some tension with naturalness, since the fine-tuning involved in

preparing a correct electroweak breaking vacuum is of order ǫ2.

The W and Y parameters are given by (for r = 0)

W ≈ Y ≈ m2
W z2

L

4 log(zL/z0)
. (5.8)

As long as zL/z0 is large, which is the case when the set-up addresses the Planck-TeV

hierarchy, the log in the denominator is large and W and Y are suppressed with respect

to m2
W/M2

KK. Thus, the constraints from W and Y are much weaker than those from S.

For example, for zL/z0 ∼ 1016, imposing W < 10−3 yields MKK > 500GeV.

5.2 Intermediate case

Before moving to the soft wall it is instructive to investigate an intermediate case. One of

the features of the soft-wall is the presence of a bulk scalar vev that spontaneously breaks

the SO(5) symmetry, which replaces the hard-wall mechanism of SO(5) breaking via IR

boundary conditions. One can consider a continuous deformation of the hard-wall scenario

where the boundary and bulk breaking coexist. This simple set-up captures some elements

of the soft wall, although the generation of the KK mass gap and the far IR dynamics of

SO(5) breaking is still described by a crude hard-wall cut-off.

We assume the bulk geometry is AdS a(z) = z0/z and we neglect back-reaction of the

bulk scalar vev. In this subsection we also neglect brane kinetic terms on the IR brane.

We choose a particular profile for the SO(5) symmetry breaking mass term:

M2(z) = µ4z2. (5.9)

The mass term does not vanish on the UV brane, but M2(z0) is suppressed by z2
0 which

ensures that the one-loop Higgs mass is not sensitive to the UV scale 1/z0. The hierarchy

problem is avoided when the mass parameter µ is not much larger than TeV. In the limit

µ → 0 we recover the hard-wall AdS example.

In this background, the equation for the Higgs profile η(z) is solved by e±µ2z2/2. At

the leading order in z0, the properly normalized profile is given by

η(z) =
1

z
1/2
0

e−µ2z2/2 − eµ
2(z2/2−z2

L
)

µ
√

1 − e−2µ2z2

L

. (5.10)
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It follows that f2
h ≈ 2µ2 coth(µ2R′2/2)/g2

∗ . We can compute the S parameter using the

integral formula (4.34) (with ∞ → zL). The integral can be easily evaluated numerically,

and the results are presented in figure 1. Furthermore, for µzL ≪ 1 we can compute the

integral perturbatively in µ to obtain

S ≈ 3πv2z2
L

2

(

1 − 11

216
µ4z4

L + . . .

)

≈ ǫ2
6π

g2
∗

(

1 +
7

216
µ4z4

L + . . .

)

(5.11)

One can see that, increasing µ and keeping all other 5D parameters constant, the S param-

eter decreases as compared to the hard-wall AdS result. A heuristic explanation of this

fact goes as follows. As explained in [3], the S parameter can be understood as a correc-

tion to the interaction vertex of the SM gauge bosons with the SM fermions. This vertex

corrections arises because the zero-mode gauge boson mix with the KK gauge bosons after

electroweak symmetry breaking. Keeping the KK mass scale constant, the vertex correc-

tions depend on the coupling of the KK gauge bosons to the SM fermions, and also on

the mixing strength which in turn depends on the overlap between the KK profiles and

the profile of the Higgs vev. Since the profiles of the KK partners of the SM fields are not

affected by µ, it is clear that in the present case it is the mixing strength that decreases.

This is illustrated in the right panel of figure 1. In the presence of the SO(5) breaking vev,

the Higgs profile is delocalized away from the IR brane where the KK modes are peaked.

From the left panel of figure 1 we can conclude that the effect is significant for µ≫ z−1
L .

Thus, in the intermediate model we have a means to control the S parameter by switch-

ing on the SO(5) breaking vev in the bulk. Note however that µzL ≫ 1 is required to obtain

a significant reduction. On the other hand, for large µ the global symmetry breaking scale

f2
h increases proportionally to µ, which makes the little hierarchy problem worse. Indeed,

one can see from eq. (5.11) that switching on µ while keeping the parameter ǫ = v/fh con-

stant (which implies varying zL) actually increases the S parameter. Moreover, for large

µ the hierarchy problem is reintroduced in yet another way: the one-loop Higgs potential

is quadratically sensitive to the value of M2 on the UV brane. Thus, in the intermediate

case we cannot remove the tension between the electroweak precision observables and the

naturalness. In the following we investigate if the constraints from the S parameter may

be relaxed in the full-fledged soft-wall backgrounds.

One could also consider a variation of the intermediate case where the broken SO(5)

generators satisfy Neumann (rather than Dirichlet) boundary conditions on the IR brane.

Then the bulk scalar vev is the only source of SO(5) breaking. Incidentally, the expression

for S in terms of the 5D parameters is not changed (see the first expression ineq. (5.11)).

This is because the Neumann solution for η(z) differs from the Dirichlet one in eq. (5.10)

only by the sign between the two exponents in the numerator, but the cross-term in η2 is

constant and does not contribute to the integral formula (4.34). What changes, however,

is the expression for the global symmetry breaking scale: f2
h ≈ 2µ2 tanh(µ2R′2/2)/g2

∗ , so

that for µR′ ≪ 1 fh is proportional to µ4. For µR′ ≫ 1 the Neumann and the Dirichlet

case become the same in every aspect.
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Figure 1: Left: The ratio of the S parameter in the intermediate model to the S parameter in the

hard-wall AdS as a function of µ. Right: Profile of the Higgs for µ = 0 (black), µ = 1.5/zL (blue)

and µ = 5/zL (red), embedded in the bulk gauge field (solid) and the bulk scalar (dashed). For

µ = 5/zL the gauge and the scalar profiles closely overlap.

5.3 Linear soft wall

Our first example of electroweak breaking on the soft wall has the metric that yields a

linear trajectory for KK resonances. The warp factor is [9]

a(z) =
z0
z
e−ρ2(z2−z2

0
). (5.12)

We assume 1/z0 ≫ ρ which implies that the warp factor is approximately the AdS one in

the UV region, while in IR the conformal symmetry is broken smoothly for z >
∼ 1/ρ. The

invariant length of the 5th dimension can be approximated as

L = z0 (log(1/z0ρ) − γ/2) + O(z2
0). (5.13)

The parameter ρ plays a similar role as the IR brane in the hard-wall: it makes the invariant

length finite and generates a mass gap of order ρ. The combination 1/z0ρ sets the UV/IR

hierarchy, analogously to zL/z0 in the hard-wall AdS example. As in the intermediate case,

the SO(5) symmetry breaking mass term is chosen as

M2(z) = µ4z2. (5.14)

The background and the mass term corresponds to the superpotential

W =
1

2z
+
√

µ4 + ρ4 z, (5.15)

which can be split as

W0 =
1

2z
+ ρ2z, UM =

(

√

µ4 + ρ4 − ρ2
)

z. (5.16)

Both W and W0 become infinite in IR which shows that the KK spectrum is discrete and

has a mass gap. UM fixes the gauge-higgs profile to be

η(z) =
(

√

µ4 + ρ4 − ρ2
)−1/2

z
−1/2
0 exp

(

−1

2

(

√

µ4 + ρ4 − ρ2
)

(z2 − z2
0)

)

, (5.17)

which is the right half of a gaussian.
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Figure 2: Left: 5D profiles of the zero mode and the first two KK modes of the photon in the

linear background for 1/z0 = 1019 GeV, ρ = 1 TeV. Right: Embedding of the Higgs boson into the

gauge field (solid red) and the bulk scalar (dashed blue) for µ = 2.4 TeV.

In this simple background we can solve the equation of motion explicitly. The normal-

izable solution is

KM (z, p) = e
− 1

2

“√
µ4+ρ4−ρ2

”

z2

U

(

− p2

4
√

µ4 + ρ4
, 0,
√

µ4 + ρ4z2

)

, (5.18)

where U is the confluent hypergeometric function of the second kind.

The photon profile (which does not see the mass term) is proportional to K0(z, p) =

U(−p2/4ρ2, 0, ρ2z2), and its KK spectrum is given by the solutions of 0 = K ′
0(z0,mn) →

U(−m2
n/4ρ

2, 1, ρ2z2
0) = 0. At the leading order in z0, the spectrum is given by the linear

Regge trajectory: mn ≈ 2ρn1/2. The first KK modes of the W and Z bosons have approx-

imately the same mass, while other vector, scalar and pseudoscalar KK modes are heavier

(the splittings depend on the parameter µ). Thus, the mass parameter ρ sets the KK scale

MKK ∼ 2ρ. Knowing the explicit solution we can find out how the profiles of the KK

modes look like, and we plotted some examples in figure 2. Even though the excited KK

profiles explode in IR, overlap integrals of the form
∫

a(z)[fn(z)]i are finite thanks to the

exponential in the warp factor.

At this point some comments on the perturbativity of our set-up are in order. In

warped theories, the strong-coupling scale is position dependent. One way to quantify it

is to introduce the effective coupling g2
eff(z, p) = z0g

2
∗p

2iP (z, z,−p2), where P is the prop-

agator in the 4D momentum/5D position space. A physical process involving exchange

of KK modes between sources peaked at z is governed by g2
eff (z, p). For p2 → 0 we have

P (z, z, p2) → 1/p2L, and the effective coupling approaches the zero mode coupling, inde-

pendently of z. While on the UV brane g2
eff (z0, p) remains perturbative up to very high

scales above the mass gap, in the IR g2
eff(z, p) grows as a power of momentum. The position

dependent strong coupling scale ΛS(z) can be defined as the momentum scale where the

effective coupling becomes non-perturbative: geff(z,ΛS(z)) ∼ 4π. The effective coupling

for the electroweak gauge bosons in the linear background is plotted in figure 3. We can see

that on the UV brane the effective coupling grows only logarithmically with momentum

while in the IR it grows much faster and quickly hits the non-perturbative values. Never-

theless, for z = 1/ρ the theory includes several KK modes before the strong coupling sets
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Figure 3: The effective SU(2)L coupling (solid red) in the linear background (ρ = 1 TeV, 1/z0 =

1019 GeV, g∗ = 3.9) as a function of momentum for z = z0 and z = 1/ρ and as a function of z for

p = 2ρ. The lower dashed line is the SM weak coupling, while the upper dashed line in the second

and the third plot marks the strong coupling geff = 4π.

in. For z ≫ 1/ρ, however, the effective coupling becomes non-perturbative below the scale

of the first KK mode. Thus, sources localized for z ≫ 1/ρ (one could, for example, try to

localize 3rd generation fermions in the far IR) are unavoidably strongly coupled in the 5D

description.

We move to the electroweak constraints. The form factor is given by

ΠM (p2) = −
(

√

µ4 + ρ4 − ρ2
)

z0 + p2 z0
2

U

(

1 − p2

4
√

µ4+ρ4
, 1,
√

µ4 + ρ4z2

)

U

(

− p2

4
√

µ4+ρ4
, 0,
√

µ4 + ρ4z2

) . (5.19)

Since U(0, b, x) = 1, ΠM (0) = −(
√

µ4 + ρ4 − ρ2)z0. Thus, the global symmetry breaking

scale is given by

f2
h =

2

g2
∗

(

√

µ4 + ρ4 − ρ2
)

. (5.20)

The first derivative of the form factor can be approximated as

Π′
M (0) = z0

(

−1

4
log
(

z4
0(ρ4 + µ4)

)

− γ/2

)

+ O(z2
0). (5.21)

Thus, we find the S parameter

S ≈
πv2 log

(

1 + µ4

ρ4

)

√

µ4 + ρ4 − ρ2
= ǫ2

2π

g2
∗

log

(

1 +
µ4

ρ4

)

. (5.22)

The S parameter depends on the combination of ρ and µ, rather than being directly related

to the KK scale. Much as in the intermediate case studied in section 5.2, increasing µ with

other 5D parameters fixed decreases the S parameter, whereas increasing µ/ρ and keeping

g∗, ǫ fixed leads to an increase of the S parameter. At the heuristic level, it turns out that

the change of the S parameter may be due to two separate effects. Firstly, in the linear soft

wall model the coupling strength of the KK modes to the SM fermions localized on the UV

brane is reduced. Numerically, one finds that the coupling to the UV brane is approximately

0.6 of that in the hard-wall AdS with analogous mass scales. This ratio depends very little

on the hierarchy ρz0, even though the UV brane coupling itself is logarithmically sensitive
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Figure 4: The S and W parameters in the linear soft wall for ǫ = 0.3.
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Figure 5: The S parameter in the linear soft wall for ǫ = 0.5, 1.

to the hierarchy. The softer KK coupling to the UV brane alone improves the S parameter

by a factor of 0.6 compared to the hard-wall, thus opening the way to relaxing the 3TeV

bound on the KK scale. On top of that, the mixing of the zero modes with the KK modes

may also be reduced due to a smaller overlap of the Higgs profile with the KK profiles, but

this effect varies in the parameter space of the model. Numerically, we find that this effect

helps to further reduce the S parameter for ǫ < 0.5 (for ρ ∼ 1 TeV).

For the W and Y parameters we find

W ≈ Y ≈ π2

48

m2
W

ρ2 log(1/z0ρ)
. (5.23)

As in the hard-wall case, as long as the UV/IR hierarchy is very large, W and Y are

suppressed by the log of the hierarchy. The resulting constraint on the KK scale turns out

to be even weaker than in the hard-wall AdS.

We conclude this analysis with some numerical studies of the electroweak constraints.

We employ the following procedure

1. We fix the UV scale to be of the order of the Planck scale, 1/z0 = 1019 GeV. We also

pick up 3 discrete values v/fh ≡ ǫ = .3, .5, 1. We scan over ρ ∈ (0.5, 1.5)TeV.

2. We assume no UV brane kinetic terms, thus the SM weak coupling is given by g2
L ≈

g2
∗z0/L. The bulk coupling g∗ can be obtained by inverting eq. (5.20). This way,

g2
L becomes a function of z0, ρ, ǫ, µ. When the first three parameters are fixed, µ is
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Figure 6: Embedding of the Higgs boson into the gauge field (solid red) and the bulk scalar

(dashed blue) in the continuum background for ǫ = 0.3, 1/z0 = 1019 GeV, ρ = 1 TeV.

determined by matching to the measured weak coupling evaluated at the TeV scale:

g2
L(TeV) ≈ 0.41. For our input parameters, we find µ ∼ 1TeV, g∗ ∼ 4.

3. We plot the S parameter as a function of ρ and find the bounds on the KK scale. The

results are presented in figures 4 and 5. For ǫ = 0.3, imposing the constraint S < 0.2

implies the rather mild bound MKK
>
∼ 1.2TeV. As suggested by eq. (5.22), the

constraints become more stringent when we decrease fh. For ǫ = 0.5 we find MKK
>
∼

2.2TeV, while for ǫ = 1 (the technicolor limit) the bound becomes MKK
>
∼ 2.6TeV.

The W parameter is at most of order 10−4, safely below the bound W <
∼ 10−3.

5.4 Continuum soft wall

Our second example has a continuous KK spectrum with a mass gap, which is completely

different from anything encountered in the hard wall models. The metric is [21]

a(z) =
z0
z
e−ρ(z−z0), W0 =

1

2z
+
ρ

2
. (5.24)

The invariant length of the 5th dimension is L = z0 (log(1/z0ρ) − γ) + O(z2
0). As before,

the warp factor is approximately AdS in UV with conformal invariance broken at z >
∼ 1/ρ.

This time, however, the decay of the warp factor in the IR is not fast enough to ensure a

discrete spectrum. Thus, there will be a continuum of KK modes starting ρ/2 (in addition

to discrete resonances who feel the M2 term in their Schrödinger potential).

In the continuum case one needs more effort to cook up a tractable example with a

sensible symmetry breaking mass term. We want the mass to decay in UV, and at the same

time we want the potential VM to be simple enough so that we can find the gauge-higgs

profile η(z). The simplest example would be to take UM = µ2z, but then M2 contains a

linear term in z, which leads to linear sensitivity of the Higgs mass to the UV scale 1/z0.

Therefore we pick up a somewhat more complicated example:

UM = µ2z + µ2ρz2 → M2(z) = µ2ρ2z2 + µ4z2(1 + ρz)2. (5.25)

The second term in UM has been engineered such that M2 ∼ z2 in UV. The gauge-higgs

profile is now

η(z) =
1

√

µ2z0(1 + ρz0)
exp

(

−1

2
µ2(z2 − z2

0) − 1

3
µ2ρ(z3 − z3

0)

)

(5.26)
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Figure 7: S parameter in the continuum soft wall for ǫ = 0.3, 0.5.

and the global symmetry breaking scale is fixed by µ,

f2
h =

2

g2
∗

µ2 (1 + ρz0) . (5.27)

This time our task is a bit harder, as we are not able to solve the equations of motion

in this background. At this point we should appreciate the formulas that express the

oblique parameters as integrals of the warp factor. We follow the same procedure as in

the linear case, assuming no UV kinetic terms and fixing µ to match the weak gauge

coupling. Lacking analytical results, we obtain the S parameter by evaluating eq. (4.34)

numerically. The results in figure 7 show that the possibility of a continuum of KK modes

is surprisingly weakly constrained by the electroweak precision data. Imposing S < .2

constrains ρ < 0.6TeV(1.4TeV) for ǫ = 0.3(0.5). Given that continuum starts at ρ/2,

in both cases new physics below 1TeV is perfectly compatible with the experimentally

observed smallness of the S parameter.

6. Summary and outlook

We extended the formulation of 5D gauge-Higgs unification to the soft wall framework

where the IR brane is replaced by a smoothly decaying warp factor. 5D gauge symmetry

is broken by UV boundary conditions and by a vev of a bulk scalar field. The Higgs

boson lives partly in the 5th component of the gauge field, and partly along the Goldstone

direction of the bulk scalar. The soft-wall version can maintain the attractive feature of

the standard gauge-Higgs scenario that the loop induced Higgs potential does not suffer

from the large hierarchy problem. More precisely, the Higgs potential is insensitive to the

scale of the UV brane is if the bulk scalar condensate is localized in IR and vanishes as z2

or faster in UV.

We argue that our construction is more than a formal exercise. Soft wall is a box of

new possibilities in KK phenomenology, allowing for new kinds of spectra and couplings

of the KK resonances. One can even construct phenomenologically viable examples where

the KK spectrum is continuous above a mass gap, with potentially striking hidden-valley

phenomenology. Most interestingly, bounds from electroweak precision test that create

some tension in the standard hard-wall scenario can be relaxed. We presented one explicit
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example where the bound from the S parameter on the lightest KK gauge boson mass

is 2TeV, rather than 3 TeV for the hard-wall. Somewhat surprisingly, the electroweak

constraints on the hidden-valley-type spectra turn out be even weaker than the constraints

on discrete resonances, allowing for a continuum starting below 1TeV. Softer is often safer.

Focused on the low energy phenomenology of the gauge sector, we left a couple of loose

ends on the model-building side. Firstly, bulk fermions were not included. Because of that,

we did not touch the flavor issues that usually are realized by different wave function

localization of the SM fermions. Moreover, we could not compute the fermion contribution

to the radiative Higgs potential. Since gauge fields yield a positive contribution to the

Higgs mass squared, we simply assumed that the fermion contribution is negative and of

appropriate magnitude to arrive at an electroweak breaking vacuum with v/fh < 1. It

would be interesting to have an explicit realization of the fermion sector to see if the soft-

wall scenario allows us to reduce the fine-tuning of electroweak breaking. Secondly, we did

not obtain our soft wall backgrounds as solutions of the equations of motion. That would

allow us to address the issues of back-reaction of the scalar condensate, radion stabilization

and so on. We restrained ourselves from solving all these problems here, so as to leave some

for future publications.
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A. Holographic derivation of the low-energy effective action

The cleanest way to compute the higher order corrections to the SM lagrangian in the

universal version of the 5D setup is by using the holographic approach [25]. It consists in

choosing the UV boundary value of the bulk gauge fields (rather than the zero modes) as

the dynamical variable in the low energy effective theory, while the bulk degrees of freedom

are integrated out. In the following we derive the effective action using the language of the

propagators in the mixed 4D momentum/5D position space (p/z propagators, in short).

To this end we first rewrite the quadratic action in the Fourier-transformed basis:

S =

∫

d4p

(2π)4

∫ ∞

z0

dz
1

2
Aµ(p, z)Dµν(p, z)Aν(p, z), (A.1)

where Dµν is the kinetic operator,

Dµν = a(z)
[

−ηµνp
2 + pµpν(1 − 1/ξ)

]

I + ηµνDz(a(z)Dz) (A.2)

The boundary terms from integration by parts vanish due to the boundary conditions and

we have added an Rξ gauge fixing term. The p/z propagator is defined as the inverse of
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the kinetic operator:

Dµρ(p, z)Pρν(p, z, w) = iδ(z − w)ηµνI. (A.3)

P is a matrix in the SO(5) × U(1)X group space, and I is the identity matrix in that

space. The propagator satisfies the same boundary conditions as the gauge field. On the

UV brane, at z = z0,

∂zPLaA = PRiA = PCâA = 0, ∂z(sxPR3A + cxPXA) = cxPR3A − sxPXA = 0, (A.4)

while the conditions in IR are that propagators should be expressed by normalizable solu-

tions to the equations of motion.

In our formalism, the effective action is obtained by writing the 5D gauge field as

Aµ(p, z) = Pµν(p, z, z0)Āµ(p). (A.5)

and plugging this back into the 5D action. This integrates out, at the tree level, the bulk

degrees of freedom, leaving the boundary source Āµ(p) as the dynamical variable of the

low energy effective theory. The quadratic terms in the effective action are given by the

UV boundary propagator:

Leff = Āµ(p)Pµν(p, z0, z0)Āν(p). (A.6)

In the following we choose ξ = 1, which implies that Pµν(p, z, w) = ηµνP (p2, z, w), and

we will denote the boundary value P (p2, z0, z0) as P̄ . Note that P (p2, z, w) satisfies the

equations of motion (a−1Dz(aDz) + p2)P (p2, z, w) = iδ(z − w) that, for z 6= w reduces to

the usual equation of motion in the gauge-higgs background. The propagator is computed

along the same lines as solving the equations of motion, which we described in eq. (4.10)

and below. After some algebra we find that they can be expressed in terms of the form

factor ΠM (p2) which, in turn can be written in terms of the normalizable solutions to the

equations of motion:

ΠM (p2) = ∂z log (KM (z, p)) |z=z0
. (A.7)

Explicitly, the non-vanishing boundary propagators are given by

iP̄LiLi
=

1

Π0(p2) + sin2(ṽ/fh)
2 (ΠM (p2) − Π0(p2))

,

iP̄L3L3
=

1 + s2x
sin2(ṽ/fh)

2
ΠM (p2)−Π0(p2)

Π0(p2)

Π0(p2) + (1 + s2x)
sin2(ṽ/fh)

2 (ΠM (p2) − Π0(p2))
,

iP̄L3B =
sx

sin2(ṽ/fh)
2

ΠM (p2)−Π0(p2)
Π0(p2)

Π0(p2) + (1 + s2x)
sin2(ṽ/fh)

2 (ΠM (p2) − Π0(p2))
,

iP̄BB =
1 + sin2(ṽ/fh)

2
ΠM (p2)−Π0(p2)

Π0(p2)

Π0(p2) + (1 + s2x)
sin2(ṽ/fh)

2 (ΠM (p2) − Π0(p2))
, (A.8)

where P̄L3B = P̄L3R3
/sx = P̄L3X/cx and P̄BB = P̄R3R3

/s2x = P̄XX/c
2
x = P̄R3X/cxsx.
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Next, we generate the SM electroweak bosons La
µ, Bµ from the boundary sources Ā(p)

in the following way:

Li
µ = Z

1/2
L P̄LiLi

L̄i
µ,

L3
µ = Z

1/2
L

[

P̄L3L3
L̄3

µ + P̄L3B(sxR̄
3
µ + cxX̄µ)

]

,

Bµ = Z
1/2
B

[

P̄L3BL̄
3
µ + P̄BB(sxR̄

3
µ + cxX̄µ)

]

. (A.9)

ZL,B are momentum independent normalization factors that will be chosen such as to make

the kinetic terms canonically normalized. This particular choice of basis ensures that the

interactions of the UV boundary fermions with La
µ, Bµ have the SM form: gLψL

aT a
Lψ +

gY ψBY ψ, with gL = Z
−1/2
L g5 and gY = Z

−1/2
B sxg5. Hence, in this basis there is no tree-

level vertex correction whatsoever. Four-fermion terms are not generated either because, by

locality, UV boundary fermions couple only to the boundary gauge bosons. The corrections

to the SM lagrangian show up only in the electroweak gauge boson sector. Quite concisely,

the quadratic terms can be given in term of the two form factors defined before:

Leff = − 1

2
Π0(p

2)
[

Z−1
L La

µL
a
µ + Z−1

B BµBµ

]

+ Z−1
L

sin2(ṽ/fh)

4

(

Π0(p
2) − ΠM (p2)

)

[

Li
µL

i
µ +

(

L3
µ − gY

gL
Bµ

)2
]

. (A.10)
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